Swine TNF-α ELISA 试剂盒

产品编号# CSE0005 (48/96 孔)

适用于猪血清、血浆或细胞培养上清液等样本

仅供研究,不用于临床诊断。

客服热线: 400-7060-959 * 技术支持邮箱: <u>tech@4abio.com</u> 公司官网: www.4abio.net

目录

简介	
检测原理	
试剂盒组分	4 -
储存条件	
其他实验材料 (不提供,但可协助购买):	
注意事项	5 -
样本收集处理及保存方法	
试剂准备	
操作步骤	
操作流程图	
操作要点提示	
结果判断	
结果重复性	
灵敏度	10 -
特异性	10 -
<u>参考文献</u>	10 -

该产品由北京四正柏生物科技有限公司研制。

请根据试剂盒中所附说明书指引进行实验。

简介

TNF-α是一种主要由单核细胞和巨噬细胞产生的单核因子。1975 年,Carswell 等人发现卡介苗攻击小鼠后再用内毒素处理,小鼠血清中出现一种能诱导肿瘤组织出血坏死的物质,故命名为肿瘤坏死因子。1985 年 Shalaby 把巨噬细胞产生的 TNF 命名为 TNF-α,把 T 淋巴细胞产生的淋巴毒素命名为 TNF-β。

猪 TNF-α主要由活化的巨噬细胞表达,其他种类细胞包括 NK 细胞,角质形成细胞,血管平滑肌细胞,和颗粒叶黄素细胞也分泌 TNF-α。

猪 TNF-α是由 232 个氨基酸残基组成的 Ⅱ 型膜糖蛋白,含有一个 35 个氨基酸的胞质域,一个 21 个氨基酸的跨膜结构域和一个 178 个氨基酸的胞外结构域。

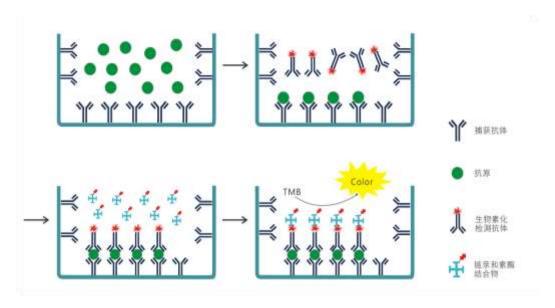
TNF-a的生物学活性非常复杂,包括对造血、免疫和炎症的调节;对血管和凝血的影响和对多种器官(肝、心脏、骨、软骨、肌肉和其它组织)的作用。

1)杀伤或抑制肿瘤细胞: TNF 在体内、体外均能杀死某些肿瘤细胞或抑制其增殖。

2)提高中性粒细胞的吞噬能力,增加过氧化物阴离子产生,增强 ADCC 功能,刺激细胞脱颗粒和分泌髓过氧化物酶。

3)抗感染:如抑制疟原虫生长,抑制病毒复制、抑制病毒蛋白合成、病毒颗粒的产生和感染性,并可杀伤病毒感染细胞。TNF 抗病毒机理不十分清楚。

4)TNF 是一种内源性热原质,引起发热,并诱导肝细胞急性期蛋白的合成。


5)促进髓样白血病细胞向巨噬细胞分化。

6)促进细胞增殖和分化:增强 IL-2 依赖的胸腺细胞、T 细胞增殖能力。TNF-α对某些肿瘤细胞具有生长因子的作用,并协同 EGF、PDGF 和胰岛素的促增殖作用,促进 EGF 受体表达。最近报道 TNF-β(LT)是 EB 病毒转化淋巴母细胞的自分泌生长因子,抗 LT 抗体、sTNF R 以及 TNF-α能抑制 EB 病毒转化淋巴细胞的增殖。

在临床上,应用 TNF 在治疗肿瘤等方面开始临床 II 期试验,也可与 IL-2 联合治疗肿瘤。TNF-q的抗肿瘤作用包括 TNF-q的直接作用和 TNF-q诱导的针对肿瘤的免疫应答。TNF-q参与包括哮喘,2 型糖尿病,Crohn's 病,和风湿性关节炎等疾病。TNF 刺激内皮细胞,导致炎症、组织损伤和凝血从而诱发感染性休克。TNF-q又称恶液素,可诱发机体发生恶液质。TNF 还具有类似 IFN 抗病毒作用,阻止病毒早期蛋白质的合成,从而抑制病毒的复制,并与 IFN-q和 IFN-y协同抗病毒作用。

检测原理

本实验采用双抗体夹心 ELISA。用抗猪 TNF-α单克隆抗体预包被酶标板,加入适度稀释的样本和标准品,其中的 TNF-α会与其单抗结合,洗去游离成分;加入生物素化的抗猪 TNF-α抗体,抗猪 TNF-α抗体与结合在单抗上的猪 TNF-α结合而形成免疫复合物,洗去游离的成分;加入辣根过氧化物酶标记的亲合素,生物素与亲合素特异性结合,洗去未结合的酶结合物;加入显色剂,若反应孔中有 TNF-α,辣根过氧化物酶会使无色的显色剂现蓝色;加终止液变黄。在 450nm 下测 OD 值,TNF-α浓度与 OD450 值之间呈正比,可通过绘制标准曲线计算出标本中 TNF-α浓度。

检测原理示意图

试剂盒组分

试剂盒组分	96 孔	48 孔	配制
1a 标准品	2支	1支	按说明书进行稀释
1b 标准品和标本稀释液	1瓶	1瓶	即用型
2a 浓缩生物素化抗体	2支	1支	按瓶签标识进行稀释
2b 生物素化抗体稀释液	1瓶	1瓶	即用型
3a 浓缩酶结合物(避光)	2 支	1支	按瓶签标识进行稀释
3b 酶结合物稀释液	1瓶	1瓶	即用型
4 浓缩洗涤液 20×	1瓶	1瓶	按瓶签标识进行稀释
显色剂 (避光)	1 瓶	1瓶	即用型
终止液	1瓶	1 瓶	即用型
抗体包被板条	8×12	8×6	即用型
封板胶纸	4 张	2 张	即用型
说明书	1份	1份	

如果您收到试剂盒后发现上表中有任何组分破损或缺失,请及时联系我司客服 400-7060-959 或 <u>tech@4abio.com</u>。 我们将及时为您解决相关问题。

储存条件

未启	封的试剂盒	4℃保存,请于保质期内使用。
已启	1b 标准品和标本稀释液	
	2a 浓缩生物素化抗体(100×)	可以整盒放入 4℃储存 1 个月。
	2b 生物素化抗体稀释液	
封或	3a 浓缩酶结合物(避光 100×)	2a 浓缩生物素化抗体和 3a 浓缩酶结合物需现用现
里	3b 酶结合物稀释液	西。
当新	4 浓缩洗涤液 20×	
溶	显色剂 (避光)	
解	终止液	4℃或常温保存
的 标准品 试	た作品	重溶后分装,-20℃存放一个月,避免反复冻融。稀释
	20~1年日1日	后的标准品使用后应丢弃,不得重复使用。
剂	 抗体包被板条	实验中不用的板条应立即放回包装袋中,密封干燥
/13	が作らixix示	4℃保存。

以上储存条件均要求在试剂盒保质期内。

其他实验材料 (不提供, 但可协助购买):

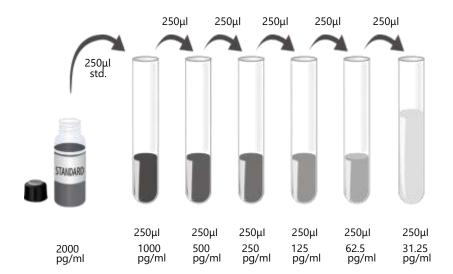
- 1. 酶标仪(450nm)
- 2. 高精度可调移液器及吸头: 0.5-10, 2-20, 20-200, 200-1000_µl; 一次检测样品较多时, 最好用多通道移液器。
- 3. 自动洗板机或洗瓶
- 4. 37℃温箱
- 5. 双蒸水或去离子水
- 6. 坐标纸
- 7. 量筒

注意事项

- 1. 试剂盒保存在 2-8℃,除复溶后的标准品,其它成分不可冷冻。
- 2. 浓缩生物素化抗体(2a)、浓缩酶结合物(3a)装量极少,运输中颠簸和可能的倒置会使液体沾到管壁或瓶盖。 使用前请离心处理以使附着于管壁或瓶盖的液体沉积到管底。
- 3. 不同批号显色剂不可混用。
- 4. 为避免交叉污染请使用一次性吸头。
- 5. 终止液和显色剂具腐蚀性,避免皮肤及粘膜直接接触,一旦接触到这些液体,请尽快用大量水冲洗。
- 6. 使用干净的塑料容器配制洗涤液,使用前充分混匀试剂盒里的各种成份及样品。
- 7. 洗涤酶标板时应充分拍干,不要将吸水纸直接放入酶标反应孔中吸水。
- 8. 不要用其它来源的试剂混合或替代该产品的组分,不同批号的试剂盒组份不能混用,请在有效日期内使用本产品。

- 9. 在试验中标准品和样本检测时建议作双复孔或三复孔,加入试剂的顺序应一致,以保证所有反应孔孵育的时间一样。
- 10. 充分混匀对反应结果尤为重要,最好使用微量振荡器(使用最低频率进行振荡)。
- 11. 避免操作过程中酶标板干燥,干燥会使酶标板上生物成分迅速失活,影响实验结果。
- 12. 适当的稀释样品,使样品值落在标准曲线范围内,根据待测因子含量高、中、低的不同,建议采用 1:100、1:10、1:2 稀释样品。如果样品 OD 值高于最高标准,适当增加稀释度并重复检测。
- 13. 标准品稀释液,操作人,移液方式,洗涤方法,孵育时间及温度,试剂盒批次的不同均可能会导致结果的 差异。
- 14. 此法可有效的消除可溶性受体、结合蛋白以及生物样品中的其他因素的干扰。

样本收集处理及保存方法


- 1. **血清**:使用不含热原和内毒素的试管,收集血液后,室温凝血30min,1000×g离心10min,小心分离血清。
- 2. 血浆: 用EDTA、柠檬酸盐、肝素作为抗凝剂收集血浆,收集后30min内以1000×g离心15min去除颗粒。
- 3. 细胞上清液: 1000×g离心10min去除颗粒和聚合物。
- 4. **保存**:若样品不立即检测,请将其按一次用量分装,-20℃—-70℃保存,避免反复冻融。尽量避免使用溶血或高血脂样本。如果血清中含有大量颗粒,检测前先离心或过滤去除;室温下解冻,请勿于37℃或更高的温度加热解冻。
- 5. 稀释:可根据实际情况,将标本做适当倍数稀释(建议做预实验,以确定稀释倍数)。

注:正常猪血清或血浆样本建议做1:2稀释。

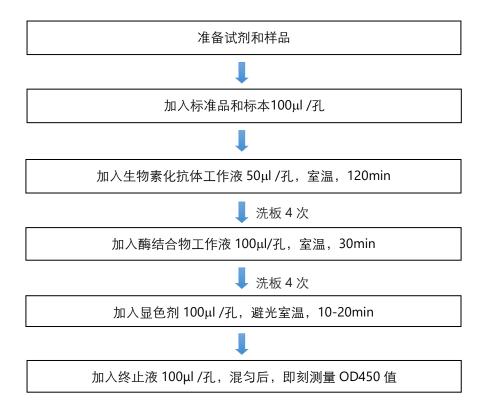
试剂准备

- 1. 提前30min从冰箱中取出试剂盒,平衡至室温。
- 2. **洗涤缓冲液**: 从冰箱中取出的浓缩洗涤液可能有结晶,这属于正常现象,加热并轻轻摇晃使结晶完全溶解后再配制。将浓缩洗涤液用双蒸水稀释(1:20)。未用完的放回4℃。
- 3. **标准品:** 加入标准品/标本稀释液(1b)0.5ml至冻干标准品(1a)中,待彻底溶解后,静置15分钟混匀(浓度为2000pg/ml),然后根据需要进行稀释,见下图(建议标准曲线使用以下浓度: 2000、1000、500、250、125、62.5、31.25、0 pg/ml)。稀释的标准品不得重复使用,未用完的标准品应按照一次用量分装后,将其放在-20~-70℃贮存,一次性使用,避免反复冻融。

标准准品稀释方法:

4. **生物素化抗体工作液**:根据每孔需要50μl来计算总的用量,多配制50-100μl。以生物素化抗体稀释液(2b)稀释浓缩生物素化抗体(2a)(1:100)。最好现用现配。 **(稀释方法见下表)**

所用板条数	浓缩生物素化抗体 生物素化抗体稀稀		生物素化抗体稀释液
12	55μL	55µL +	
10	45µL	+	4455µL
8	35µL	+	3465µL
6	25µL	+	2475µL
4	17μL	+	1683µL
2	9µL	+	891µL
1	4.5µL	+	444.5µL


5. **酶结合物工作液**:以酶结合物稀释液(3b)稀释浓缩酶结合物(3a)(1:100)。最好现用现配。**(稀释方法见下** 表)

所用板条数	浓缩酶结合物酶结合物稀释液		酶结合物稀释液
12	110µL	+	10890μL
10	90µL	+	8910µL
8	70μL	+	6930µL
6	50μL	+	4950µL
4	33µL	+	3267µL
2	17µL	+	1683µL
1	9µL	+	891µL

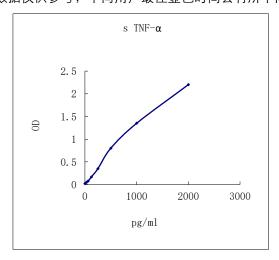
操作步骤

- 1. 按照上述准备工作配制好各种溶液。
- 2. 根据待测样品数量和标准品的数量决定所需的板条数,并增加1孔作为空白对照孔。分别将标本和不同浓度标准品(100 μL/孔)加入相应孔中,加入生物素化抗体工作液(50μL/孔)。用封板胶纸封住反应孔,室温孵育120分钟(空白对照孔除外)。充分混匀对反应结果尤为重要,要使用微量振荡器(最低频率700rpm)。
- 3. 洗板4次: (1)自动洗板机: 要求注入的洗涤液为350µL, 注入与吸出间隔15-30秒。(2)手工洗板: 甩尽孔内液体,每孔加洗涤液350µL,静置30秒后甩尽液体,在厚迭吸水纸上拍干。
- 4. 加入酶结合物工作液(100 μL /孔)。用封板胶纸封住反应孔,室温孵育30分钟(空白对照孔除外)。使用微量振荡器(使用最低频率700rpm)。
- 5. 洗板4次。
- 6. 加入显色剂100 µL /孔, 避光, 室温孵育10-20分钟。
- 7. 加入终止液100 μL/孔,混匀后即刻测量OD450值(5分钟内)。

操作流程图

操作要点提示

1. 配制各种试剂时要充分混匀,但要避免产生大量泡沫,以免加样时加入大量的气泡,产生加样误差。


- 2. 为避免交叉污染,在加入不同浓度的标准品、不同样品、不同试剂时谨记及时更换吸头。
- 3. 为了确保准确的结果,在每次孵育前均需使用新封板胶纸封住反应孔。
- 4. 显色剂在添加之前,应保持无色,请勿使用已变为蓝色的显色溶液。最佳显色时间对标准曲线很重要,肉眼可见前 3-4 孔有梯度蓝色,后 3-4 孔差别不明显,零孔无蓝色出现即可终止。
- 5. 每次检测均要做标准曲线,根据样品待测因子的含量,适当稀释或浓缩样本,最好做预实验。

结果判断

- 1. 每个标准品和标本的OD值应减去空白孔的OD值,如果做复孔,求其平均值。
- 2. 使用计算机软件以吸光度OD值为纵坐标(Y),相应的标准品浓度为横坐标(X),生成相应的标准曲线,样品的 待检物含量可根据其OD值由标准曲线换算出相应的浓度。
- 3. 若标本 OD 值高于标准曲线上限,应适当稀释后重测,计算浓度时应乘以稀释倍数算标本含量。
- 4. 参考数据:

标准品浓度(pg/ml)	OD值1	OD值2	平均值	矫正值
0	0.023	0.022	0.023	——
31.25	0.049	0.051	0.050	0.044
62.5	0.078	0.076	0.077	0.086
125	0.168	0.164	0.166	0.178
250	0.349	0.345	0.347	0.372
500	0.801	0.798	0.799	0.749
1000	1.350	1.346	1.348	1.377
2000	2.201	2.196	2.199	2.193

数据仅供参考,不同用户最佳显色时间会有所不同

本图仅供参考,应以同次试验标准品所绘标准曲线为准

结果重复性

板间,板内变异系数均<10%。

灵敏度

最低检测猪 TNF-a剂量小于 15pg/ml。 最低检出量测定方法: 20 个零标准的平均 OD 值增加两个标准差,再计算相应的浓度。

特异性

此试剂盒可检测天然和重组的猪 TNF-a,以 70ng/ml 平行做特异性试验,均不与下列细胞因子及蛋白反应。

重组人细胞因子	重组小鼠细胞因子
TNF-β	$TNF-\alpha\ (truncated)$
GM-CSF	s TNF RI
s TNF RI	s TNF RII IL-4
s TNF RII	
s TNF RII/Fc	

参考文献

- 1. Trebichavsky, I. et al. (1995) Folia Microbiol. 40:417.
- 2. Allen, D.G. et al. (2001) Toxicol. Lett. 119:209.
- 3. Newman, W.H. et al. (1998) J. Surg. Res. 80:129.
- 4. Vezina, S-A. et al. (1995) Clin. Diag. Lab. Immunol. 2:665.
- 5. PaµLi, U. (1995) Vet. Immunol. Immunopathol. 47:187.
- 6. PauLi, U. et al. (1989) Gene 81:185.
- 7. Von Niederhausen, B. et al. (1993) Vet. Immunol. Immunopathol. 38:57.
- 8. Kuhnert, P. et al. (1991) Gene 102:171.
- 9. Kwon, B. et al. (1999) Curr. Opin. Immunol. 11:340.
- 10. Idriss, H.T. and J.H. Naismith (2000) Microsc. Res. Tech. 50:184.
- 11. Sedgwick, J.D. et al. (2000) Immunol. Today 21:110.
- 12. Thomas, P.S. (2001) Immunol. Cell Biol. 79:132.

- 13. Saltiel, A.R. et al. (2001) Cell 104:517.
- 14. D'Haens, G. (2003) Curr. Pharm. Des. 9:289.
- 15. Feldmann, M. and R.N. Maini (2001) Annu. Rev. Immunol. 19:163.